Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases.
نویسندگان
چکیده
Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels proved useful for exploring both fast-evolving and ancient signaling events. We reveal that multiple complex diseases seem to converge within the conserved networks, suggesting that disease development might rely on common molecular networks.
منابع مشابه
Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks
Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyros...
متن کاملAnalysis of NSP4 Gene and Its Association with Genotyping of Rotavirus Group A in Stool Samples
Background: Non-structural protein 4 (NSP4) is a critical protein for rotavirus (RV) replication and assembly. This protein has multiple domains and motifs that predispose its function and activity. NSP4 has a sequence divergence in human and animal RVs. Recently, 14 genotypes (E1-E14) of NSP4 have been identified, and E1 and E2 have been shown to be the most common genotypes in human. Methods:...
متن کاملP 97: Neurodegeneration Induced by Tau protein
Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...
متن کاملMetabolic Pathway Alignment (M-Pal) Reveals Diversity and Alternatives in Conserved Networks
We introduce a comparative analysis of metabolic reaction networks between different species. Our method systematically investigates full metabolic networks of multiple species at the same time, with the goal of identifying highly similar yet non-identical pathways which execute the same metabolic function, i.e. the transformation of a specific substrate into a certain end product via similar r...
متن کاملDivide, Align and Full-Search for Discovering Conserved Protein Complexes
Advances in modern technologies for measuring protein-protein interaction (PPI) has boosted research in PPI networks analysis and comparison. One of the challenging problems in comparative analysis of PPI networks is the comparison of networks across species for discovering conserved modules. Approaches for this task generally merge the considered networks into one new weighted graph, called al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science signaling
دوره 2 81 شماره
صفحات -
تاریخ انتشار 2009